Tap for spoiler

The bowling ball isn’t falling to the earth faster. The higher perceived acceleration is due to the earth falling toward the bowling ball.

  • Sasha@lemmy.blahaj.zone
    link
    fedilink
    English
    arrow-up
    0
    ·
    edit-2
    20 days ago

    If anyone’s wondering, I used to be a physicist and gravity was essentially my area of study, OP is right assuming an ideal system, and some of the counter arguments I’ve seen here are bizarre.

    If this wasn’t true, then gravity would be a constant acceleration all the time and everything would take the same amount of time to fall towards everything else (assuming constant starting distance).

    You can introduce all the technicalities you want about how negligible the difference is between a bowling ball and a feather, and while you’d be right (well actually still wrong, this is an idealised case after all, you can still do the calculation and prove it to be true) you’d be missing the more interesting fact that OP has decided to share with you.

    If you do the maths correctly, you should get a=G(m+M)/r^2 for the acceleration between the two, if m is the mass of the bowling ball or feather, you can see why increasing it would result in a larger acceleration. From there it’s just a little integration to get the flight time. For the argument where the effect of the bowling ball/feather is negligible, that’s apparent by making the approximation m+M≈M, but it is an approximation.

    I could probably go ahead and work out what the corrections are under GR but I don’t want to and they’d be pretty damn tiny.

    • Simulation6@sopuli.xyz
      link
      fedilink
      English
      arrow-up
      0
      ·
      20 days ago

      Physics books always say to assume the objects are points in doing calculations. Does the fact that the ball is thicker then the feather make a difference?

      • Sasha@lemmy.blahaj.zone
        link
        fedilink
        English
        arrow-up
        0
        ·
        edit-2
        20 days ago

        Possibly?

        A bowling ball is more dense than a feather (I assume) and that’s probably going to matter more than just the size. Things get messy when you start considering the actual mass distributions, and honestly the easiest way to do any calculations like that is to just break each object up into tiny point like masses that are all rigidly connected, and then calculate all the forces between all of those points on a computer.

        I full expect it just won’t matter as much as the difference in masses.

          • Sasha@lemmy.blahaj.zone
            link
            fedilink
            English
            arrow-up
            0
            ·
            edit-2
            20 days ago

            Yeah it would fair point, I’ll be honest I haven’t touched Newtonian gravity in a long time now so I’d forgotten that was a thing. You’d still need to do a finite element calculation for the feather though.

            There’s a similar phenomenon in general relativity, but it doesn’t apply when you’ve got multiple sources because it’s non-linear.

            • BB84@mander.xyzOP
              link
              fedilink
              English
              arrow-up
              0
              ·
              edit-2
              19 days ago

              So if I have a spherically symmetric object in GR I can write the Schwarzschild metric that does not depend on the radial mass distribution. But once I add a second spherically symmetric object, the metric now depends on the mass distribution of both objects?

              Your point about linearity is that if GR was linear, I could’ve instead add two Schwarzschild metrics together to get a new metric that depends only on each object’s position and total mass?

              Anyway, assuming we are in a situation with only one source, will the shell theorem still work in GR? Say I put a infinitely light spherical shell close to a black hole. Would it follow the same trajectory as a point particle?

              • Sasha@lemmy.blahaj.zone
                link
                fedilink
                English
                arrow-up
                0
                ·
                edit-2
                19 days ago

                Yeah, once you add in a second mass to a Schwarzschild spacetime you’ll have a new spacetime that can’t be written as a “sum” of two Schwarzschild spacetimes, depending on the specifics there could be ways to simplify it but I doubt by much.

                If GR was linear, then yeah the sum of two solutions would be another solution just like it is in electromagnetism.

                I’m actually not 100% certain how you’d treat a shell, but I don’t think it’ll necessarily follow the same geodesic as a point like test particle. You’ll have tidal forces to deal with and my intuition tells me that will give a different result, though it could be a negligible difference depending on the scenario.

                Most of my work in just GR was looking at null geodesics so I don’t really have the experience to answer that question conclusively. All that said, from what I recall it’s at least a fair approximation when the gravitational field is approximately uniform, like at some large distance from a star. The corrections to the precession of Mercury’s orbit were calculated with Mercury treated as a point like particle iirc.

                Close to a black hole, almost definitely not. That’s a very curved spacetime and things are going to get difficult, even light can stop following null geodesics because the curvature can be too big compared to the wavelength.

                Edit: One small point, the Schwarzschild solution only applies on the exterior of the spherical mass, internally it’s going to be given by the interior Schwarzschild metric.

                • Sasha@lemmy.blahaj.zone
                  link
                  fedilink
                  English
                  arrow-up
                  0
                  ·
                  edit-2
                  19 days ago

                  On that first point, calculating spacetime metrics is such a horrible task most of the time that I avoided it at all costs. When I was working with novel spacetimes I was literally just writing down metrics and calculating certain features of the mass distribution from that.

                  For example I wrote down this way to have a solid disk of rotating spacetime by modifying the Alcubierre warp drive metric, and you can then calculate the radial mass distribution. I did that calculation to show that such a spacetime requires negative mass to exist.

                • BB84@mander.xyzOP
                  link
                  fedilink
                  English
                  arrow-up
                  0
                  ·
                  18 days ago

                  even light can stop following null geodesics because the curvature can be too big compared to the wavelength

                  Very interesting! How do you study something like this? Is it classical E&M in a curved space time, or do you need to do QED in curved space time?

                  Also, are there phenomena where this effect is significant? I’m assuming something like lensing is already captured very well by treating light as point particles?

  • reliv3@lemmy.world
    link
    fedilink
    English
    arrow-up
    0
    ·
    edit-2
    21 days ago

    This argument is deeply flawed when applying classical Newtonian physics. You have two issues:

    1. Acceleration of a system is caused by a sum of forces or a net force, not individual forces. To claim that the Earth accelerates differently due to two different forces is an incorrect application of Newton’s second law. If you drop a bowling and feather in a vacuum, then both the feather and the bowling ball will be pulling on the Earth simultaneously. The Earth’s acceleration would be the same towards both the bowling ball and the feather, because we would consider both the force of the feather on the Earth and the force of the bowling ball on the Earth when calculating the acceleration of the Earth.
    2. You present this notion that two different systems can accelerate at 9.81 m/s/s towards Earth according to an observer standing on the surface of Earth; but when you place an observer on either surface of the two systems, Earth is accelerating at a different rate. This is classically impossible. If two systems are accelerating at 9.81 m/s/s towards Earth, then Earth must be accelerating 9.81 m/s/s towards both systems too.
    • BB84@mander.xyzOP
      link
      fedilink
      English
      arrow-up
      0
      ·
      edit-2
      21 days ago

      Re your first point: I was imagining doing the two experiments separately. But even if you do them at the same time, as long as you don’t put the two objects right on top of each other, the earth’s acceleration would still be slanted toward the ball, making the ball hit the ground very very slightly sooner.

      Re your second point: The object would be accelerating in the direction of earth. The 9.81m/s/s is with respect to an inertial reference frame (say the center of mass frame). The earth is also accelerating in the direction of the object at some acceleration with respect to the inertial reference frame.

  • Shard@lemmy.world
    link
    fedilink
    English
    arrow-up
    0
    ·
    22 days ago

    So will the bowling ball gravitationally attract the earth to itself there by reach the earth an infinitesimally small amount?

    • BB84@mander.xyzOP
      link
      fedilink
      English
      arrow-up
      0
      ·
      21 days ago

      Yes, the earth accelerates toward the ball faster than it does toward the feather.

        • BB84@mander.xyzOP
          link
          fedilink
          English
          arrow-up
          0
          ·
          edit-2
          21 days ago

          If your bowling ball is twice as massive, the force between it and earth will be twice as strong. But the ball’s mass will also be twice as large, so the ball’s acceleration will remain the same. This is why g=9.81m/s^2 is the same for every object on earth.

          But the earth’s acceleration would not remain the same. The force doubles, but the mass of earth remains constant, so the acceleration of earth doubles.

          • Venator@lemmy.nz
            link
            fedilink
            English
            arrow-up
            0
            ·
            edit-2
            21 days ago

            I wonder how many frames per… picosecond you’d need to capture that on camera… And what zoom level you’d need to see it.

            I think the roughness of the surface of the bowling ball would have a bigger impact on the time, in that the surface might be closer at some points if it were to rotate while falling.

          • Robust Mirror@aussie.zone
            link
            fedilink
            English
            arrow-up
            0
            ·
            21 days ago

            But if you’re dropping them at the same time right next to each other, the earth is so large they would functionally be one object and pull the earth at the same combined acceleration.

  • roscoe@lemmy.dbzer0.com
    link
    fedilink
    English
    arrow-up
    0
    ·
    edit-2
    21 days ago

    This would make a good “What if?” for XKCD. In a frictionless vacuum with two spheres the mass of the earth and a bowling ball how far away do they need to start before the force acting on the earth sized mass contributes 1 Planck length to their closure before they come together? And the same question for a sphere with the mass of a feather.